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Basic IdeaBasic Idea
1. Create a regular grid on a bounded rectangular 

region of the plane. Each square of the grid 
represents a step function

2. We can compute analytically the Fourier
transform of the function defined by the sum of 
these step functions. The coefficients are 
unaffected by this transformation

3. Compute the coefficients of the step functions 
using this fact and the sampled values of the 
spectral domain by a least-squares approximation

1. Create a regular grid on a bounded rectangular 
region of the plane. Each square of the grid 
represents a step function

2. We can compute analytically the Fourier
transform of the function defined by the sum of 
these step functions. The coefficients are 
unaffected by this transformation

3. Compute the coefficients of the step functions 
using this fact and the sampled values of the 
spectral domain by a least-squares approximation



3

Signals and FrequencySignals and Frequency

A signal can be decomposed in components 
called harmonics
Harmonics reveal the “frequency contents”
of the signal

A signal can be decomposed in components 
called harmonics
Harmonics reveal the “frequency contents”
of the signal
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Signals and FrequencySignals and Frequency

For example, light can be decomposed in its 
components with a prism
For example, light can be decomposed in its 
components with a prism
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Signals and FrequencySignals and Frequency

The electromagnetic theory describes light 
as an electric and a magnetic wave
The electromagnetic theory describes light 
as an electric and a magnetic wave
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Signals and FrequencySignals and Frequency

The basic harmonic functions can be built 
from the sine and cosine functions
The basic harmonic functions can be built 
from the sine and cosine functions
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The Fourier TransformThe Fourier Transform

We can use the Fourier transform to study 
the spectral contents of a signal
We can use the Fourier transform to study 
the spectral contents of a signal
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The Fourier TransformThe Fourier Transform

Lets compute an example, the Fourier 
transform of the rectangle function
Lets compute an example, the Fourier 
transform of the rectangle function
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The Fourier TransformThe Fourier Transform

Lets compute an example, the Fourier 
transform of the rectangle function
Lets compute an example, the Fourier 
transform of the rectangle function



10

The Fourier TransformThe Fourier Transform
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The Fourier TransformThe Fourier Transform

We can also extend the definition of the
Fourier transform to the plane
We can also extend the definition of the
Fourier transform to the plane
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What is an image?What is an image?

Suppose you have a black and white image 
made of “pixels”
Suppose the image has N by N pixels
Assume each pixel has a gray value

Suppose you have a black and white image 
made of “pixels”
Suppose the image has N by N pixels
Assume each pixel has a gray value
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What is an image?What is an image?

For example: 16 by 16 with 256 shadesFor example: 16 by 16 with 256 shades
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What is an image?What is an image?

Mathematically, we can think of an image 
as a sum of characteristic functions in the 
plane

Mathematically, we can think of an image 
as a sum of characteristic functions in the 
plane
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What is an image?What is an image?
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Fourier Transform of an imageFourier Transform of an image



17

Fourier Transform of an imageFourier Transform of an image

From which we obtain,From which we obtain,
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Fourier Transform of an imageFourier Transform of an image

Or, in simplified form,Or, in simplified form,
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Fourier Transform of an imageFourier Transform of an image

This means we only need to sample on the 
unit square [0,1)x[0,1) in the spectral 
domain!
Therefore, we can collect all samples in the 
unit square and associate them to a regular 
grid that is sufficiently refined
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Inversion theoryInversion theory

Having developed all this theory, how do 
we actually recover an image from samples 
in the frequency domain?

Having developed all this theory, how do 
we actually recover an image from samples 
in the frequency domain?
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Inversion theoryInversion theory

Lets re-enumerate the squares in the image 
by an alphabetical order
Lets re-enumerate the squares in the image 
by an alphabetical order



22

Inversion theoryInversion theory

The Fourier transform of the image 
becomes 
The Fourier transform of the image 
becomes 
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Inversion theoryInversion theory

So, assume we have samples of the Fourier 
transform of the image, then we should 
satisfy

So, assume we have samples of the Fourier 
transform of the image, then we should 
satisfy
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Inversion theoryInversion theory

We identify a matrix vector product!We identify a matrix vector product!
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Inversion theoryInversion theory

A is M by N^2, f is N^2 by 1, and b is M by 
1
M needs to be bigger than N^2
A can become really big if N is big
Storage problem

A is M by N^2, f is N^2 by 1, and b is M by 
1
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A can become really big if N is big
Storage problem
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Inversion theoryInversion theory

Lets try the following trick, and explore 
some consequences of this new approach
Lets try the following trick, and explore 
some consequences of this new approach
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Inversion theoryInversion theory

Solving the modified system is equivalent 
to solving the least squares problem and the 
solution f will satisfy

Solving the modified system is equivalent 
to solving the least squares problem and the 
solution f will satisfy
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Algorithms for inversionAlgorithms for inversion

We know then that we have a least squares 
problem
We have at least two good methods to try:
Singular Value Decomposition
Conjugate Gradient method

We know then that we have a least squares 
problem
We have at least two good methods to try:
Singular Value Decomposition
Conjugate Gradient method
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Algorithms for inversionAlgorithms for inversion

Singular Value DecompositionSingular Value Decomposition
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Algorithms for inversionAlgorithms for inversion

We form the residueWe form the residue
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Algorithms for inversionAlgorithms for inversion

The problem though is space
Space to store matrix grows like N^4
Try Conjugate Gradient method instead
We know A*A is Hermitian and positive 
semidefinite, good candidate for CG!
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ExperimentsExperiments

We will create a bank of images to sample 
in the spectral domain
Test the CG algorithm to reconstruct the 
original image
Compare with downsampled original

We will create a bank of images to sample 
in the spectral domain
Test the CG algorithm to reconstruct the 
original image
Compare with downsampled original
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