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Basic ldea

Create a regular grid on a bounded rectangular
region of the plane. Each square of the grid
represents a step function

2. \\e can compute analytically the Fourier
transform of the function defined by the sum of
these step functions. The coefficients are
iffected by this transformation

@ompute the coefficients of the step functions
USINg this fact and the sampled values of the
Suectral domain by a least-squares approximation



Signals and Frequency

= A ssignal can be decomposed in components
called harmonics

= Harmonics reveal the “frequency contents”
Of the signal



Signals and Frequency

= For example, light can be decomposed In its
components with a prism



- Signals and Frequency

The electromagnetic theory describes light
as an electric and a magnetic wave
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Signals and Frequency

L The basic harmonic functions can be built
from the sine and cosine functions



The Fourier Transform

= \We can use the Fourier transform to study
the spectral contents of a signal

L f(y) = / f(z)e 2™ da

—2mif _cos(2¢r€) — 1.sin(2m0)



- The Fourier Transform

= Lets compute an example, the Fourier
transform of the rectangle function




- The Fourier Transform

= Lets compute an example, the Fourier
transform of the rectangle function

1 if |z| < 3,
% if |x| = %
0 if |z|> 2



- The Fourier Transform
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- The Fourier Transform

. We can also extend the definition of the
Fourier transform to the plane

flo,v) = / / f(z,y)e 2 =TTV dydy
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What Is an image?

Suppose you have a black and white image
e of “pixels”

ppose the image has N by N pixels
sPASsuUme each pixel has a gray value
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What Is an image?

= For example: 16 by 16 with 256 shades
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What Is an image?

. Mathematically, we can think of an image
as a sum of characteristic functions in the
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flz,y) =

r‘

What Is an image?

kazxkz z,Y)

1 if (z,y) €

~.~ 0 otherwise.

k.l
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-ourier Transform of an image
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ourier Transform of an image

= From which we obtain,

E}: , fﬁzif:+l —Eﬂaiﬁdm LH']- —?ﬂiy’i’dy
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=ourier Transform of an image

= Or, in simplified form,

f{cr,’r) _ (Z fk:EE—'&!ﬂ'&kr:rE—Errih)E—iﬂ[a+’rjsiﬂuﬂ{ﬂ,)5in%{,}‘,)

k.l
flo+m,vy+n) _ (1) sine, (o + m)sine, (v + n)
- sinc, (o)sine, ()

f(o. 7)

LLLLLL sinc. (o +m)sinc.(y+n) »
(-ayreenSenlo T msinesy+ m)
sinc, (o)sine, ()
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Fourier Transform of an image

» This means we only need to sample on the
unit square [0,1)x[0,1) in the spectral
domain!

Babherefore, we can collect all samples in the
At square and associate them to a regular
geictthat is sufficiently refined
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Inversion theory

Having developed all this theory, how do
we actually recover an image from samples
In the frequency domain?
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Inversion theory

= | ets re-enumerate the squares in the image
by an alphabetical order

ijXj £L y

flz,y) =

21



Inversion theory

= The Fourier transform of the image
becomes

f{ﬂ"f (Ef:’ —amikjo o —2mil;y ) _"T':g""ﬂsincﬂ(ﬂ')sinﬂﬁ{’;r’}
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Inversion theory

= So, assume we have samples of the Fourier

_Eqr-ifj;’:r'e _'*ITTI:U_FT:I Eiﬂ[.'--;;— {JJSinc‘ﬂ' {’T]
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Inversion theory

= \We identify a matrix vector product!

agloo, o) a1 (&0, Vo) anz_1(00, Vo) fo by
aplor, 1) a1, Y1) awz_1(o1,71) fi B by
tf.x-:-;:’fr'.-i-;:' agilom—1,YM—-1) ... anz_1{on—1,vm—1) fnea_1 bar—1

Af =b

ﬂ-:]':
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Inversion theory

AisM by N*2, fis N*2 by 1, and b is M by
1

needs to be bigger than N/2
A can become really big if N is big
storage problem
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Inversion theory

= Lets try the following trick, and explore
some consequences of this new approach

. Af =b

= (A"A) 1A%

26



Inversion theory

= Solving the modified system is equivalent
to solving the least squares problem and the
solution f will satisfy

JAf — bl = min | Az — b]]
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~ Algorithms for inversion

= \We know then that we have a least squares
problem

= \\/e have at least two good methods to try:
mESingular VValue Decomposition
seonjugate Gradient method
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- Algorithms for inversion

= Singular Value Decomposition

A=UXV"

A*A = (UZV*)*UZV*
= (VIUYUZV*
= Vv
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- Algorithms for inversion

= \We form the residue

U*Ax — U*b||?

SV*x — cl?
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Algorithms for inversion

ne problem though Is space
pace to store matrix grows like N4
Conjugate Gradient method Instead

8 know A*A is Hermitian and positive
S€midefinite, good candidate for CG!
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Experiments

. We will create a bank of Images to sample
In the spectral domain

= [est the CG algorithm to reconstruct the
figinal Image
Seompare with downsampled original
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